Metal-phosphate interactions in the hammerhead ribozyme observed by 31P NMR and phosphorothioate substitutions.
نویسندگان
چکیده
The hammerhead ribozyme is a catalytic RNA that requires divalent metal cations for activity under moderate ionic strength. Two important sites that are proposed to bind metal ions in the hammerhead ribozyme are the A9/G10.1 site, located at the junction between stem II and the conserved core, and the scissile phosphate (P1.1). (31)P NMR spectroscopy in conjunction with phosphorothioate substitutions is used in this study to investigate these putative metal sites. The (31)P NMR feature of a phosphorothioate appears in a unique spectral window and can be monitored for changes upon addition of metals. Addition of 1-2 equiv of Cd(2+) to the hammerhead with an A9-S(Rp) or A9-S(S)(Rp) substitution results in a 2-3 ppm upfield shift of the (31)P NMR resonance. In contrast, the P1.1-S(Rp) and P1.1-S(Sp) (31)P NMR features shift slightly and in opposite directions, with a total change in delta of </=0.6 ppm with addition of up to 10 equiv of Cd(2+). No significant shifts are observed for an RNA.RNA duplex with a single, internal phosphorothioate modification upon addition of Cd(2+). Data obtained using model compounds including diethyl phosphate/thiophosphate, AMP, and AMPS, show that a Cd(2+)-S interaction yields an upfield shift for the (31)P NMR resonance, even in the case of a weak coordination such as with diethyl thiophosphate. Taken together, these data predict that Cd(2+) has a high affinity for the A9 site and suggest that there is flexibility in metal coordination within the binding pocket. Cd(2+) interactions with the cleavage site P1.1-S positions are weaker and appear to be stereospecific. These data have implications for mechanisms that have been proposed to explain the influence of metal ions on hammerhead ribozyme activity. These experiments also show the potential utility of (31)P NMR spectroscopy in conjunction with phosphorothioates as a probe for metal binding sites in nucleic acids.
منابع مشابه
Characterization of a native hammerhead ribozyme derived from schistosomes.
A recent re-examination of the role of the helices surrounding the conserved core of the hammerhead ribozyme has identified putative loop-loop interactions between stems I and II in native hammerhead sequences. These extended hammerhead sequences are more active at low concentrations of divalent cations than are minimal hammerheads. The loop-loop interactions are proposed to stabilize a more ac...
متن کاملInvolvement of a specific metal ion in the transition of the hammerhead ribozyme to its catalytic conformation.
Previous crystallographic and biochemical studies of the hammerhead ribozyme suggest that a metal ion is ligated by the pro-Rp oxygen of phosphate 9 and by N7 of G10.1 and has a functional role in the cleavage reaction. We have tested this model by examining the cleavage properties of a hammerhead containing a unique phosphorothioate at position 9. The Rp-, but not Sp-, phosphorothioate reduces...
متن کاملIdentification of the hammerhead ribozyme metal ion binding site responsible for rescue of the deleterious effect of a cleavage site phosphorothioate.
The hammerhead ribozyme crystal structure identified a specific metal ion binding site referred to as the P9/G10.1 site. Although this metal ion binding site is approximately 20 A away from the cleavage site, its disruption is highly deleterious for catalysis. Additional published results have suggested that the pro-R(P) oxygen at the cleavage site is coordinated by a metal ion in the reaction'...
متن کاملMetal ions play a passive role in the hairpin ribozyme catalysed reaction.
The hairpin ribozyme is an example of a small catalytic RNA which catalyses the endonucleolytic transesterification of RNA in a highly sequence-specific manner. The hairpin ribozyme, in common with all other small ribozymes such as the hammerhead, requires the presence of a divalent metal ion co-factor (typically magnesium) for the reaction to take place. To investigate the role of magnesium io...
متن کاملSolvent structure and hammerhead ribozyme catalysis.
Although the hammerhead ribozyme is regarded as a prototype for understanding RNA catalysis, the mechanistic roles of associated metal ions and water molecules in the cleavage reaction remain controversial. We have investigated the catalytic potential of observed divalent metal ions and water molecules bound to a 2 A structure of the full-length hammerhead ribozyme by using X-ray crystallograph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 39 40 شماره
صفحات -
تاریخ انتشار 2000